a2 United States Patent

US010872122B2

(0) Patent No.: US 10,872,122 B2

Elliott et al. 45) Date of Patent: Dec. 22,2020
(54) KNOWLEDGE MANAGEMENT SYSTEM (52) U.S.CL
AND PROCESS FOR MANAGING CPC ... GOG6F 16/93 (2019.01); GOGF 16/212

KNOWLEDGE

(71) Applicant: Government of the United States of
America, as represented by the
Secretary of Commerce, Gaithersburg,
MD (US)

(72) Inventors: John Elliott, Silver Spring, MD (US);
Talapady N. Bhat, Gaithersburg, MD
(US); Ursula R. Kattner, Germantown,
MD (US); Carelyn E. Campbell,
Germantown, MD (US); Ram D.
Sriram, Ellicott City, MD (US);
Eswaran Subrahmanian, Washington,
DC (US); Jacob Collard, Ithaca, NY
(US); Ira Monarch, Pittsburgh, PA
(US)

(73) Assignee: GOVERNMENT OF THE UNITED
STATES OF AMERICA, AS
REPRESENTED BY THE
SECRETARY OF COMMERCE,
Gaithersburg, MD (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 234 days.

(21) Appl. No.: 15/883,449
(22) Filed: Jan. 30, 2018

(65) Prior Publication Data
US 2019/0236153 A1~ Aug. 1, 2019
(51) Imt.CL

GO6F 16/93
GO6F 1621

(2019.01)
(2019.01)

(Continued)

Leaf {TOREN : siring FPEATURES
| Node {LEFT © A, RIGHT : A HEAD !

(2019.01); GO6F 16/313 (2019.01); GO6F
16/3344 (2019.01); GOG6F 40/117 (2020.01);
GO6F 40/169 (2020.01); GO6F 40/211
(2020.01); GO6N 5/00 (2013.01)
(58) Field of Classification Search

CPC . GOG6F 8/425; GOGF 8/42; GOGF 8/427; GO6F
40/237; GOGF 40/284; GO6F 16/3335;
GOG6F 40/211

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2007/0033221 Al* 2/2007 Copperman GO6F 16/367
2007/0250487 Al* 10/2007 Reuther GO6F 16/367
(Continued)

OTHER PUBLICATIONS

Pradhan et al., “Shallow Semantic Parsing using Support Vector
Machines”, HLT-NAACL 2004 (Year: 2004).*

(Continued)

Primary Examiner — David T. Brooks
(74) Attorney, Agent, or Firm — Office of Chief Counsel
for National Institute of Standards and Technology

(57) ABSTRACT

Aknowledge management system includes: a default knowl-
edge system including: a knowledge system and a knowl-
edge database in communication with the knowledge sys-
tem; and a knowledge store in communication with the
default knowledge system and including: a taxonomy
amendment, an annotation amendment, a canonicalization
amendment, an ecosystem amendment, a term amendment,
and a phrase amendment.

15 Claims, 37 Drawing Sheets

string — string}
{LEPT, RIGHT }FEATURES @

gtring - siring}

US 10,872,122 B2

Page 2
(51) Int. CL 2014/0095505 Al* 4/2014 Blanchflower GOGF 16/134
GO6N 5/00 (2006.01) 707/737
GO6F 40/117 (2020.01) 2014/0337355 Al* 112014 Heinze GOG6F 16/313
GOGF 16/33 (2019.01) 707/742
GOG6F 40211 (2020.01) 2015/0142443 Al* 5/2015 Hwang GOGF 40/211
’ 704/257
GO6F 40/169 (2020.01)
2016/0132484 Al* 5/2016 Nauze GOGF 40/242
GO6F 16/31 (2019.01) 704/9
(56) References Cited 2016/0188570 Al* 6/2016 Lobez Comeras ... GOGF 16/367
704/9
U.S. PATENT DOCUMENTS 2017/0193393 Al* 7/2017 Contractor GO6N 5/022
2018/0232443 Al* 8/2018 Delgoccccoeeenrnn G06Q 30/06
2008/0221878 Al* 9/2008 Collobert GOGF 40/30
704/232
2010/0195909 Al* 8/2010 Wasson GOGF 40/169 OTHER PUBLICATIONS
2010/0235307 AL* 9/2010 Sweeney GO6F ?2/23/;7‘3 Manning et al., “The Stanford CoreNLP Natural Language Process-
706/12 ing Toolkit”, Proceedings of 52nd Annual Meeting of the Associa-
2013/0013291 Al* 1/2013 Bullockcc...... GOG6F 40/30 tion for Computational Linguistics: System Demonstrations, pp.
. 704/9 55-60, Baltimore, Maryland USA, Jun. 23-24, 2014. (Year: 2014).*
2013/0204606 AL* 82013 Zong oo, GO6F 47‘82 4;; Bhat, T.N., et al., “Strategy for Extensible, Evolving Terminology
for the Materials Genome Initiative Efforts”, The Minerals, Metals
3k ’ t]
2013/0325436 AL* 122013 Wang oo GOGE 47‘8;3/(9) & Materials Society, 2015, 1866-1875, vol. 67 No. 8.
2014/0074886 Al* 3/2014 Medelyan GOGF 16/36

707/777

* cited by examiner

US 10,872,122 B2

Sheet 1 of 37

Dec. 22, 2020

U.S. Patent

642

)

1414

T 2aIn31 g

[

\ 91098
juawpusure oseayd

84¢

(

mw.Spm JUSWIPUSUE ULID)

942

~

91018
JUUWIPUOUIR WDISAS009

184

(

791098 JusuIpuaue
UOT)BZI[BOTUOURD

Gea

¢

mmm&ﬁa@ ogpoymouy

8¢%

0638

885

9¢e

e

welsAs Junerado

™

WYISAS 63POTMOUY

¥
(

/
91078 JUDTWPUI IR UOTIRIOUUR

063

(

7
9101S JUOTPUI IR AWOUOXE)

91018 9Fpo[Mouy

244

§

wosAs adpojmouy I neep

(

Gl

81T 4

012

918

{

JIomlau

US 10,872,122 B2

Sheet 2 of 37

Dec. 22, 2020

U.S. Patent

7 9In3r

31z~ 910)s 9Spormouy

H\/mmm

I0MOWRI] ULID b
Mﬁ J } L uoneroudd oseryd ! | o101s oSpormouy] m
1% N A ... CyTTRITTTTt o |
(\)ﬁ@N |||||||||||||||||||||||| !
.......... M.------------J e8¢ \ 90V H\;wcw]1¢
] 1
“ | IOMOUIRT
- i 910)s Spermouy] “ 101BIoUSS WLIo) k¢ J YI0OMOUIRIJ
b e _ (, uonerouss oseryd . UOT)RZI[ROTUOTRD
e Y ; ypy) A —x
RS EEEEEEEEE - / (443 9L7 l 2oy Av\,mom ARS 4,\45
} 91038 egpormouy m T MIomewedj IodeuewW [— I9ZI[BITUOURD
B Naiieieiieiely _ uorjejouue <«p| , UuonejouuE P n” 1% e oseayd
aLe 4 A \) N v
0Lz 1z 08 00€
JIoMOUTRTJ 101BI9UIS 908
> Fe 297 Isnoyasem
UD)SAS0I9 > U9)SAS009
f \ % - ogpemouy 992
09%
ﬁfm/ 998 g9g OvE - avE) ae
TN i IoSeuewt U reSeurwr (.v._, K
! 9I0]S 93po[mouy i _ oseqejep !
e “ UI9)SAS0d9 (A/w 93parmouy m ogpormouy m
29¢ J G
yee 98¢ 9z¢ v
JI0MAUIe T ToSeuew ddd L
Iop[mq Awouoxe)
Aurouoxe) A.ﬂ : . A.ﬂ Aurouoxe)
gce BaE 8z€ 08e 228

US 10,872,122 B2

Sheet 3 of 37

Dec. 22, 2020

U.S. Patent

¢ 2INgT

IoOMOUIRT] ULIOY | 9I0)S oSpoymou m ; _
Z1% um ’ “ < POt i1 9X01s oSpormouy i
) L S . b e e !
V8¢
— M : 288 | ele yov 8Ig
217 | 9109s ogpomouy w 101RI0URS WIS JIoMoweI) NIoMOUTeT]
ww.m i f g uoneIaUD3 aseryd (UOTJBZI[EITUOURD
A A
w 1\ H\;%m 917 Asw& a0 oo zte W\;Em
| OI0)S OSPI[MOUY | [yromourer) ToSeuewr IOZI[BOTUOURD
e e e e e ! Iojerouas oseayd LA
uorjejoUUR <« , uomejOoUUE f oseayd
ZLE 7 7 (= N)
G0¢ 00¢
JIOMOUWET] I0}eIoUdS3 0Lz ——¢le YT 80¢ 90€
W9S£5009 | >, Wd)sAS009 8VE 892 1
= agpormouy 992
215 ((092 295
99¢ 89¢ OVE orE)
“.--f k IoSeurw ' JoSeuewW myv_, 1
! 9X0)S 93pormouy PR i JOIAIISqIM |
| “ (W9)SAS009 / ogpomouy m !
........................) C—~yze -----------------.N--:--_
H\;N@m yes 986 @Nm)ﬁ‘ L
YIOMOUIRT] IoSeuBw oty 86¢
% Iopmg Awouoxe)
urouoxe} A.ﬂ) A.ﬂ Awouoxey
)))
gge 89 82¢ 08¢ ot

U.S. Patent Dec. 22, 2020 Sheet 4 of 37 US 10,872,122 B2

Ot
-]

502

{D1, D2, D3, ..., Dn}

Figure 4

U.S. Patent Dec. 22, 2020 Sheet 5 of 37 US 10,872,122 B2

=
=

{D191, D192, D193, ..., D100}

506

Figure 5

U.S. Patent Dec. 22, 2020 Sheet 6 of 37 US 10,872,122 B2

o
-]
-]

602

{0151, 0152, 0153, ..., 015}

Figure 6

U.S. Patent Dec. 22, 2020 Sheet 7 of 37 US 10,872,122 B2

{g1N1 g¢N2 g N3 ~g{Nn}

702

Figure 7

U.S. Patent Dec. 22, 2020 Sheet 8 of 37 US 10,872,122 B2

oo
-]
-]

802

{N1Rl NiR2 N{R3 .. N;Rn}

Figure 8

U.S. Patent Dec. 22, 2020 Sheet 9 of 37 US 10,872,122 B2

O
-]
-]

902

{R1C1, RzCZ, R3C3, . RnCn}

Figure 9

U.S. Patent Dec. 22, 2020 Sheet 10 of 37 US 10,872,122 B2

1002

{(C1, C2, C3, ..., Co)PL (Cn+1, Cn+2, Cn+s, ..., Ce)P2,
(Cm+1, Cm+2, Cm+3, ..., COP3, ..,
(C1+1, C1+2, C1+3, ..., Cm)P4

Figure 10

U.S. Patent Dec. 22, 2020 Sheet 11 of 37 US 10,872,122 B2

1102

{(P1, P2, Ps, ..., Pn)TL (Pn+1, Pnt2, Pn+s, ..., Pm) T2,
(Pm+1, Pm+2, Pm+3, ..., PDTS3, ..., (P1+1, P1+2, P1+3, ..., P T4

Figure 11

U.S. Patent Dec. 22, 2020 Sheet 12 of 37 US 10,872,122 B2

1202

N

{{D1, D191, 0151, $1N1 N1R1 R €1
(C1, C2, Cs, ..., Co)PL, (P1, P2, P, ..., Pp)T1]EL

Figure 12

U.S. Patent Dec. 22, 2020 Sheet 13 of 37 US 10,872,122 B2

Leaf {TOREN : string FEATURES © string — string}
| Node {LEFT © A RIGET © A HEAD ¢ {LEPT, RIGHT}FEATURES @ sirdng — siring}

Figure 13

U.S. Patent Dec. 22, 2020 Sheet 14 of 37 US 10,872,122 B2

: N »
JEESN X \§~?\§:\,}. \§:~Q % ‘t 3 g__ N “%i.‘? RER P
ALY LY L . é}w? %fég
P {\ § S T {\ iy « \ . 3 gz‘!&? £

Figure 14

U.S. Patent Dec. 22, 2020 Sheet 15 of 37 US 10,872,122 B2

TERM : siring
DOCUMENT : D pointer

Figure 15

U.S. Patent Dec. 22, 2020 Sheet 16 of 37 US 10,872,122 B2

\ Input: Corpus C \

Y

Initialize empty sets Pand 7'

6 7

Generate a
taxonomy A
from all terms 7’

Are there unprocessed
documents remaining in

o?

Output P, 7,
C and R

Get an unprocessed document d
from C

v

Annotate document d 2

v

Extract a set phrase ’'ti a term,

producing a set of terms 7" 3

Convert each phrase in P'to a tern A
producing a set if terns 7"

Associate all terms in 7"with 5

document d

v

Set P=PUPand 7=Tu T

Figure 16

U.S. Patent Dec. 22, 2020 Sheet 17 of 37

US 10,872,122 B2

Algorithm 1 Root- and Rule-Based Terminology Generation

-~

42

¢
N

1
2
3

{3

N

procedure Man{()

P
for all Documents J in O do
ANNOTATE{d)
P Exrracr{d)
T Terms{#)
for all Tamt i T do
LDOCUMENT
P e Pup
T e Tl
B+ Taxonomy{l
veturn (P11, C R

Figure 17

U.S. Patent Dec. 22, 2020 Sheet 18 of 37 US 10,872,122 B2

CONTENT = An experimental study...

; ”E \§ A T & BPNY LN ; ¢ .sl_\t.v : \§-; P
S VRS 1 & Y A & i3
B ST IR N ~ ELNIRNE N SN S N SR e A R

Figure 18

U.S. Patent Dec. 22, 2020

Sheet 19 of 37 US 10,872,122 B2

/ \ / \

>/ \ < madg \<
, /\ /\
experimental of > in <

study /\ /\

a < order <

Win{\< to/ \<
ir{ \> determée >
th({ \<

propeller slipstream >

spanwise distri

<
/N
bution of >

0f<

>/ \<
lift/inérease / \<\

due

to <

thqtream

/\

at>

diff at/ \
erent, < >
/ \ differen{ \>

A

angles >

/<\3

RN

free stream to slipstream

of attack the wing > < velocity ratios

Figure 19

U.S. Patent Dec. 22, 2020 Sheet 20 of 37 US 10,872,122 B2

N

5 N
& kS \»‘ \.\(
the resulis <
\‘\v,
N
o <7
AN PN
5 .".\ Y
AN R

intended < a8 >

Tue Eag

evalnation hasis for >

AN
o ~
diffsrent >
-"“ \
& \'\
theoratioad «©
o ~
N
N

frogimenis <

of >
N
N

this problem

Figure 20

U.S. Patent Dec. 22, 2020 Sheet 21 of 37 US 10,872,122 B2

[An experimental study of a wing in a propeller %ii‘g}@tye&mﬁ

lexperimental study of a wing in a propeller slipstream)

lexperimental study]

la wing in a propeller slipstrea m}

lwing in & propeller slipstream)

lpro ‘g}eiiér slipstream|

[the spanwise distribution of the Hft increase due to slipstream at different
anglex of attack of the wing and at different free stream to slipstream
velocity ratios)

spanwize distribution of the Ift increase due to slipstream at ditferent
angios of attack of the wing and st diferent free stream to slipstream
velovity ratios]

lspanwise (%}i@:%;xﬁ:m’é&o&]

it increase]

ishipstream at different angles of attack of the wing and at different free
stream o slipsiream veloolty rz&t&:mé
islipstream|

different angles of attack of the wingi
angles of attack of the wing]
angles of attack]

sitack]

i
5
k
im&&j@j
E
l

ditferent free stream to slipstream velocity ratios]
free stream]

slipstream|

veloeity mmmﬁ

{
bwing
i
i

Figure 21

U.S. Patent Dec. 22, 2020 Sheet 22 of 37 US 10,872,122 B2

propeller:0:slipstream:1:wing:2:experimental:0:study

experimental:0:study

propeller:0:shipstream:1:wing

propeller:0:shpstream
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:shipstream 6:1ift:0:increase:7:spanwise:0:distribution

spanwise:0:distribution
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:slipstream:6:1ift:0increase

lift:0:increase
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:shipstream

slipstream

different:2:wing:1:attack:0:angle

wing:1:attack:0:angle

attack:0:angle

attack

angle

wing

different:3:free:0:stream:1:slipstream:2:velocity:0:ratio

free:0:stream

velocity:0:ratio

Figure 22

U.S. Patent Dec. 22, 2020 Sheet 23 of 37 US 10,872,122 B2

Propeller:0:slipstream:1:wing:2:experimental:0:study (1)
Propeller:0:slipstream:1:wing (2)

experimental:0:study (2)

propeller:0:slipstream (2)

attack (8)

angle (8)

wing (7)

slipstream (6)

spanwise:0:distribution (2)

lift:0:increase (3)

attack:0:angle (7)

wing:1:attack:0:angle (6)

free:0:stream (5)

velocity:0:ratio (5)

different:2:wing:1:attack:0:angle (5)
different:3:free:0:stream:1:slipstream:2:velocity:0:ratio (4)
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:slipstream (3)
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:slipstream:6:1ift:0:increase (2)
different:2:wing:1:attack:0:angle:4:different:3:free:0:stream:1:slipstream:2:velocity:0:
ratio:5:slipstream:6:1Lift:0'increase:7:spanwise:0:distribution (1)

Figure 23

US 10,872,122 B2

Sheet 24 of 37

Dec. 22, 2020

U.S. Patent

7 9In3Ty

U - UOnIouun p dunnpoxd
Nc wﬁ%ﬁﬁ@@ﬁ M_.mw.ﬁw 1 ﬁ&ﬁﬁw@%ﬁﬁ ww..m.wuﬁwmdw

P

~der

(p)uwt — v uorpelouur 197 | 47

\ ISH Y 4 @ W Ppomt Yo

¢ ¢ ¢ f uonouny _ 0
N (@, a:/ ;. d , /Ei. (P f = paeT e
/ durssevoxdard quepusdap-ureuwtop y \ AT

\ P uemnoop y /
(7 do1g) mo1IRIouUY JUSTINDO(]

L

US 10,872,122 B2

Sheet 25 of 37

Dec. 22, 2020

U.S. Patent

Gg en31y]

D — SNOLLVLONNY P ¥
@W Hh —> D g
Py =pr %
{(PYAIVIONNY aanpadoad]
S P - @ @ W ppot yosxmboy
(I ¢ ¢ f nonouny Sussonaxderd yuopnoedop-urewiop ¥ roambeyy

HOLRIONTY JHownno] £ wyeesy

U.S. Patent Dec. 22, 2020 Sheet 26 of 37

Phrase Extraction {Step 3)

\ & dovumed, d \

ARSI

e

IR

) 7 Are there supoovessed seuinneds S
Heturn ~ o gy
................................. ranaining fu & o
w"jﬁﬁ
yex]

. 3et &n \m* rw‘wweﬁ n\uu‘ist‘e X 3‘1’0& e
IR

Mﬁy\\\

e o oy v
“\N"Mw“" \\\
S Are theve wsprocssead

T B0
et
., suidress ronsioing T NT e

S x**“’f
\\\% L

o
raw

o

B unprocsseed suldros o bowm N §

vﬂ‘,\:&’\o_

wﬁ-’*‘ o,

E326] -

US 10,872,122 B2

< ‘*}\"\\: sind s ke auy raloe in K

Ry
A& b oof ralen %

s = {111 \

X o
N e
N, e
N, L
\\"\, L o
\\N«*‘"
Vem §

“-\'-'-m‘-\\w-m\m’-’-*\m’-’n\v—\k\

\ Chatput n \

R ANNRIINNNE

Figure 26

U.S. Patent Dec. 22, 2020 Sheet 27 of 37 US 10,872,122 B2

Algorithm 3 Phrase Extraction
Require: A set of rules E C {ele: A — {0,1}};
1: procedure EXTRACT(d)
2: P+« {}
3: for all s in d.ANNOTATIONS do
4: N ¢ SUBTREES(s.a)
for all nin N do
for alle in F do

o

7 if e(n) = 1 then
8: Apb(n, P
o: return

Figure 27

U.S. Patent Dec. 22, 2020 Sheet 28 of 37 US 10,872,122 B2

Algorithm 4 Subtree ldentification
1: procedure SURTREES{a)

: if @ is a leal node then
3 return < g >

4 else

5 [< a.LEFT

2

o~

6: 74— Q.RIGHT

7: if ! is a branching node or r is a branching node then
&: return < a > + SUBTREES{]}) + SUBTREES(r)

a: else

10: return < a >

Figure 28

U.S. Patent Dec. 22, 2020 Sheet 29 of 37 US 10,872,122 B2

Algorithm 5 Extraction Rule
1: procedure DEFAULTEXTRACTOR{)
if . FEATURES"pos™) = N then
3 return frue
else
return false

2
Z0
.

a

(W S VN

Figure 29

U.S. Patent Dec. 22, 2020 Sheet 30 of 37 US 10,872,122 B2

Tenninology Generation {(Step 4}
X

. ,
A seb of nhrages. B %
\ A set of phrases, £ 5

T & :. \
no Ave there unprocessed ™

Returmn e _ i . " =
. phrases remwining n FP7 -

e e

v

da | Get an vnprocessed phease p from P

4b | Convert p to a term #

B
e
-

3
3

feo Uutput £

Figure 30

U.S. Patent Dec. 22, 2020 Sheet 31 of 37 US 10,872,122 B2

Algorithm 6 Terminology Generation
1: procedure TERMS(P)

2: T + {}

3: for all pin P do

4: t < CONVERT(p)

5: if . TERM s "" then
6: App(t, T)

return 77

Figure 31

U.S.

Patent Dec. 22, 2020

4b{#

Pemi

Sef sarvent _head = pLEPT
et current_dependent = pRIGHT

4b{it}

Sheet 32 of 37

US 10,872,122 B2

Phrase Converstion {Step 4b)

N A phrase p \\

\ A function ¢ @ string — siving N
e
I’\.’* ",
o I
.,-r‘“'f‘)‘ o }‘w X . % .
< T palest nﬁdh ~~~~~~~~~~~ i\ Retwrs g{p} bl
_\\\\"’ ’(f,x' P Fenstnanitattnnitatiraasaatitasana
\\\:/ -
i no
e ;ix\
g M,
- T
o i
VO N
ot Does pHEAY = LEPT >
W
e
. },.rf
‘\\ .a"‘f

BG

Set current depenshadt = p LERY
Set CONVERTED _HEAD = CONVERT{owrrent_head) ah{ai)
Set CONVERTED__DEPENDENT == CONVERT{vwrrent_dependent) | i,

N

A
\'\
RN

0 2 i x ™,
A voanbination fumction

e: T xTud T

X

M Return o{cnrrent_head, eurvent_dependent, 7} \éb{m}

Figure 32

U.S. Patent Dec. 22, 2020 Sheet 33 of 37 US 10,872,122 B2

Algorithm 7 Terminelogy Conversion

Require: A function ¢ : string — string
Require: A combination functione 1 T xT x AT

&

"

i:
2
3
4
5

6:

AR |
KN

10
il:
12

procedure CONVERT(p)

if p iz a leaf node then
return ¢(p)
if p.HEAD = LEFT then
current _dependent 4~ p.RIGHT
else
current__dependent < p.LERT
converted _head < CoNVERT{current _head)

return o{converted _head, converted _dependent, p)

Figure 33

U.S. Patent Dec. 22, 2020 Sheet 34 of 37 US 10,872,122 B2

/::»\

different <

N
/\ /\

angles < of

/\ /\

of attack the wing

Figure 34

U.S. Patent Dec. 22, 2020 Sheet 35 of 37 US 10,872,122 B2

Taxonomy Generation {Step 8)
\ A list of tevmug, T \\

&

B | Initinlize an emply set B

&b Create asot X = {e{fit & T}

e R
e e,
e B
T N By = .
< Are there unprocessed pairs of terms In X7 - Sort K by terw frequency | 8o

‘ i
\ Return \§§

S,

- \
ne N N)
“~«<\\\§}s:§e3 rin, b} produce a valid snswer? >

Add {noreRM, hTERM, ria, i) o R

Figure 35

U.S. Patent Dec. 22, 2020 Sheet 36 of 37 US 10,872,122 B2

Algorithm B Tavonomy Generation

Require: A function¢c: 7 — &

Require: A function r: A x &~ relation
1: procedure Taxonomy({T)
2 R {}

4 for allain ¥ do

5: for all bin T where a £ b do

& if r{a, b) succeeds then

7 Add {a.reaM, borerM, r{a, b)) to B
& Sort & by term frequency.

& return K

Figure 36

US 10,872,122 B2

Sheet 37 of 37

Dec. 22, 2020

U.S. Patent

Le 8angiy

wvif{CLd LA T LA L) (WL L LA L) (L S LA AL L)

US 10,872,122 B2

1
KNOWLEDGE MANAGEMENT SYSTEM
AND PROCESS FOR MANAGING
KNOWLEDGE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with United States Government
support from the National. Institute of Standards and Tech-
nology (NIST), an agency of the United States Department
of Commerce. The Government has certain rights in the
invention. Licensing inquiries may be directed to the Tech-
nology Partnerships Office, NIST, Gaithersburg, Md.,
20899; voice (301) 301-975-2573; email tpo@nist.gov; ref-
erence Ser. No. 15/883,449.

BRIEF DESCRIPTION

Disclosed is a knowledge management system compris-
ing: a default knowledge system comprising: a knowledge
system; and a knowledge database in communication with
the knowledge system; and a knowledge store in commu-
nication with the default knowledge system and comprising:
a taxonomy amendment; an annotation amendment; a
canonicalization amendment; an ecosystem amendment; a
term amendment; and a phrase amendment.

Also discloses is a process for managing knowledge, the
process comprising: requesting a document by a knowledge
manager; communicating the documents to the knowledge
manager from a knowledge database; requesting a taxonomy
by the knowledge manager; communicating the taxonomy to
the knowledge manager from a taxonomy manager; request-
ing an ecosystem by the knowledge manager; communicat-
ing the ecosystem to the knowledge manager from an
ecosystem manager; requesting a annotation by the knowl-
edge manager; communicating the annotation to the knowl-
edge manager from an annotation manager; and communi-
cating a knowledge management data to a knowledge
warehouse from the knowledge manager to manage knowl-
edge.

Further disclosed is a computer-implemented method,
comprising: requesting a document by a knowledge man-
ager; communicating the documents to the knowledge man-
ager from a knowledge database; requesting a taxonomy by
the knowledge manager; communicating the taxonomy to
the knowledge manager from a taxonomy manager; request-
ing an ecosystem by the knowledge manager; communicat-
ing the ecosystem to the knowledge manager from an
ecosystem manager; requesting a annotation by the knowl-
edge manager; communicating the annotation to the knowl-
edge manager from an annotation manager; and communi-
cating a knowledge management data to a knowledge
warehouse from the knowledge manager to manage knowl-
edge.

Also disclosed is a system comprising: one or more
computers configured to perform operations, the operations
comprising: requesting a document by a knowledge man-
ager; communicating the documents to the knowledge man-
ager from a knowledge database; requesting a taxonomy by
the knowledge manager; communicating the taxonomy to
the knowledge manager from a taxonomy manager; request-
ing an ecosystem by the knowledge manager; communicat-
ing the ecosystem to the knowledge manager from an
ecosystem manager; requesting a annotation by the knowl-
edge manager; communicating the annotation to the knowl-
edge manager from an annotation manager; and communi-

10

15

20

25

30

40

45

50

55

60

65

2

cating a knowledge management data to a knowledge
warehouse from the knowledge manager to manage knowl-
edge.

Also disclosed is a computer-readable medium having
instructions stored thereon, which, when executed by a
processor, cause the processor to perform operations com-
prising: requesting a document by a knowledge manager;
communicating the documents to the knowledge manager
from a knowledge database; requesting a taxonomy by the
knowledge manager; communicating the taxonomy to the
knowledge manager from a taxonomy manager; requesting
an ecosystem by the knowledge manager; communicating
the ecosystem to the knowledge manager from an ecosystem
manager; requesting a annotation by the knowledge man-
ager; communicating the annotation to the knowledge man-
ager from an annotation manager; and communicating a
knowledge management data to a knowledge warehouse
from the knowledge manager to manage knowledge.

BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered
limiting in any way. With reference to the accompanying
drawings, like elements are numbered alike.

FIG. 1 shows a knowledge management system;

FIG. 2 shows communication of knowledge that involves
a knowledge system;

FIG. 3 shows communication of knowledge that involves
a knowledge system;

FIG. 4 shows documents;

FIG. 5 shows objects of a document;

FIG. 6 shows sentences of an object;

FIG. 7 shows snippets of a sentence;

FIG. 8 shows words of a snippet;

FIG. 9 shows canonicalized roots from a collection of
words;

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.
tions;

FIG. 17 shows pseudocode for production of terms,
phrases, and relations;

FIG. 18 shows a document object element,

FIG. 19 shows a phrase structure tree;

FIG. 20 shows a phrase structure tree;

FIG. 21 shows phrases extracted from an annotated docu-
ment;

FIG.

FIG.

FIG.

FIG.

FIG.

10 shows phrases from roots;

11 shows terms from phrases;

12 shows an ecosystem of a term of T1;

13 shows a data type for a document annotation;
14 shows a data type for a document object;

15 shows a data type describing a term;

16 shows production of terms, phrases, and rela-

22 shows terms generated from a document;
23 shows taxonomic relations;
24 shows document annotation;
25 shows a pseudocode for document annotation;
26 shows phrase extraction;
FIG. 27 shows a pseudocode for phrase extraction;
FIG. 28 shows a pseudocode for subtree identification for
phrase extraction;
FIG. 29 shows a pseudocode for default system for phrase
extraction;
FIG. 30 shows terminology generation;
FIG. 31 shows a pseudocode for terminology generation;
FIG. 32 shows phrase conversion;
FIG. 33 shows a pseudocode for phrase conversion;
FIG. 34 shows a phrase structure tree;
FIG. 35 shows taxonomy generation;

US 10,872,122 B2

3

FIG. 36 shows a pseudocode for taxonomy generation:
and
FIG. 37 shows a taxonomy.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
presented herein by way of exemplification and not limita-
tion.

Advantageously and unexpectedly, it has been discovered
that a knowledge management system that is a root- and
rule-based knowledge system and a process for managing
knowledge herein indexes documents with natural language
processing tools and a rule and root based methodology.
Unexpectedly and advantageously, the knowledge manage-
ment system and process for managing knowledge create a
phrase based structured keyword that encode semantics and
facilitates a search of knowledge with the documents. Ben-
eficially, the knowledge management system and process for
managing knowledge search for terms and their context of
appearance (also referred to as semantics) to disambiguate
search results. The knowledge management system and
process for managing knowledge continuously provides
incremental evolution of terminology in a domain. A result
from the knowledge management system and process for
managing knowledge deterministically and consistently cre-
ates a domain based taxonomy of concepts and ecology of
concepts and its evolution during a search and discovery
process. The root- and rule-based knowledge system and
process for managing knowledge can provide these useful
results in a timely way that could not be done by humans
alone even with other forms of computer support.

In an embodiment, with reference to FIG. 1, knowledge
management system 200 manages knowledge and includes
default knowledge system 210. Default knowledge system
210 includes knowledge system 228 and knowledge data-
base 232 in communication with knowledge system knowl-
edge system 228. Also, knowledge management system
includes knowledge store 212 in communication with
default knowledge system 210. Knowledge store 212
includes a taxonomy amendment store 250, an annotation
amendment store 252, a canonicalization amendment store
254, an ecosystem amendment store 256, a term amendment
store 258, and a phrase amendment store 259.

Knowledge management system further can include net-
work 216 in communication with default knowledge system
default knowledge system 210, input device 220 in commu-
nication with default knowledge system, output device 224
in communication with default knowledge system, or a
combination thereof. It is contemplated that default knowl-
edge system default knowledge system 210 can include
operating system 236 in communication with knowledge
system 228 and knowledge database knowledge database
232.

Knowledge management system 200 has numerous uses,
including managing knowledge. In an embodiment, with
reference to FIG. 2, a process for managing knowledge
includes: requesting documents 262 (FIG. 4) by knowledge
manager 260; communicating 262 (FIG. 4) to knowledge
manager 260 from knowledge database 232; requesting
build of taxonomy 324 (FIG. 37) by knowledge manager
260; communicating taxonomy 324 (FIG. 37) to knowledge
manager 260 from taxonomy manager 322; requesting cre-
ation of ecosystem 336 (FIG. 12) by knowledge manager
260; communicating ecosystem 336 (FIG. 12) to knowledge
manager 260 from ecosystem manager 334; requesting
creation of terms 272 (FIG. 11) by knowledge manager 260;

20

30

40

45

55

4

communicating terms 272 (FIG. 11) to knowledge manager
260 from annotation manager 270; and communicating
ecosystem 268 (FI1G. 12) to knowledge warehouse 266 from
knowledge manager 260 to manage knowledge.

The process for managing knowledge also can include
requesting the taxonomy builder to build taxonomy 328
(FIG. 37) by taxonomy manager 322; communicating tax-
onomy 330 (FIG. 37) to taxonomy manager 322 from
taxonomy builder 328; requesting taxonomy building
scheme 358 from taxonomy framework 356 by taxonomy
builder 328; communicating taxonomy building scheme 358
to taxonomy builder 328 from taxonomy framework 356;
requesting amendments to taxonomy building scheme 362
from knowledge store 212 by taxonomy framework 356; and
communicating taxonomy amendments 362 to taxonomy
framework 356 from taxonomy amendment store 250.

The process for managing knowledge also can include
ecosystem manager 334 requesting ecosystem generator 340
to build ecosystem 342; communicating ecosystem 342 to
ecosystem manager 334 from ecosystem generator 340;
ecosystem generator 340 requesting scheme for creating
ecosystem 368; communicating ecosystem building scheme
368 to the ecosystem generator 340 from ecosystem frame-
work 366; requesting provision of amendments applicable to
ecosystem scheme 254 by ecosystem framework 366; and
communicating amendments applicable to ecosystem
scheme 254 to ecosystem framework 366 from the knowl-
edge store 212.

The process for managing knowledge also can include
requesting scheme for annotation 348 by annotation man-
ager 270; communicating the scheme for annotation 348 to
annotation manager 270 from annotation framework 346;
annotation framework 346 requesting amendments to the
scheme for annotation 352; and communicating the
amended annotation scheme 352 to the annotation frame-
work 346 from knowledge store 212.

The process for managing knowledge also can include
annotation manager 270 requesting generation of terms 278
from a sentence 602; communicating terms 278 to the
annotation manager 270 from the term generator 276; term
generator 276 requesting the scheme for generating terms
284; communicating the scheme for term generation 284 to
term generator 276 from the term framework 282; term
framework 282 requesting the knowledge store 212 for
amendments to the scheme for term generation 288; and
communicating the scheme for term generation 288 by the
knowledge store 212 to the term framework 282.

The process for managing knowledge also can include
annotation manager 270 requesting the phrase generator 300
to generate canonicalized phrases (FIG. 10) 302; commu-
nicating canonicalized phrases 302 to the annotation man-
ager 270 from the phrase generator 300; phrase generator
300 requesting the phrase canonicalizer 306 to create
canonicalized phrases 308 for roots 900; communicating
canonicalized phrases 308 to phrase generator 300 from the
phrase canonicalizer 306; phrase canonicalizer 306 request-
ing the scheme for canonicalizing 314 communicating the
canonicalization scheme 314 to the phrase canonicalizer 306
from the canonicalization framework 312; canonicalization
framework 312 requesting the knowledge store 212 to
provide amendments if any to the scheme for canonicalizing
318; and the knowledge store 212 communicating the
amendments applicable to canonicalization scheme 318 to
the canonicalization framework 312.

In the process for managing knowledge, requesting docu-
ments 262 by knowledge manager 260 includes sending a
signal from knowledge system 228 to knowledge database

US 10,872,122 B2

5

232 along communication channel 230, asking for a new
document object 502, or collection of document object
elements 500.

In the process for managing knowledge, communicating
documents 262 to knowledge manager 260 from knowledge
database 232 includes sending a document object element
502 or a collection of document objects 500 from the
knowledge database 232 to the knowledge system 228 along
230.

In the process for managing knowledge, requesting tax-
onomy 324 taxonomy manager 322 by the knowledge
manager 260 includes sending a set of term elements 1100
from each document object element such as 506 to the
taxonomy manager 322, operating system 236 stores and
manages any working data.

In the process for managing knowledge, communicating
taxonomy 324 to knowledge manager 260 from the tax-
onomy manager 322 includes a set of taxonomy elements
1150 to the knowledge manager 260, operating system 236
performs operations and manages any working data.

In the process for managing knowledge, requesting eco-
system manager 334 to build ecosystem 336 by the knowl-
edge manager 260 includes sending each document 502,
each document object element 506, a sentence 602, a snippet
702, related phrases 1000, related terms 1100, and related all
phrases of taxonomy 1150 to ecosystem manager 334.

In the process for managing knowledge, communicating
ecosystem 336 to knowledge manager 260 from ecosystem
manager 334 includes sending a set of ecosystem elements
1200 of each document 502 to knowledge manager 260,
operating system 236 performs operations and manages any
working data.

In the process for managing knowledge, requesting to
build terms 272 by knowledge manager 260 includes send-
ing a document object element 506 to annotation manager
270.

In the process for managing knowledge, communicating
terms 272 to knowledge manager 260 from annotation
manager 270 includes sending an annotated set of terms
1100 to knowledge manager 260; operating system 236
performs operations and manages any working data.

In the process for managing knowledge, communicating
ecosystem 268 to knowledge warechouse 266 from knowl-
edge manager 260 includes sending ecosystem elements
1200 to knowledge warehouse 266. Knowledge warchouse
266 stores these ecosystem elements in the warehouse 266,
sends 218 them over to network 216, or displays the
ecosystems on output device 224; operating system 236
performs operations and manages any working data.

In the process for managing knowledge, requesting to
build taxonomy 330 by taxonomy manager 322 includes
sending a set of term such as 1100 which correspond to a
document object element 506 to taxonomy builder 328.
Operating system 236 performs operations and manages any
working data.

In the process for managing knowledge, communicating
taxonomy 330 to taxonomy manager 322 from taxonomy
builder 328 includes sending a set of taxonomy elements
1150 to taxonomy manager 322.

In the process for managing knowledge, requesting to
build taxonomy for snippets 358 by taxonomy builder 328
includes sending a set of terror elements (1102, 1104) to
taxonomy framework 356. Taxonomy builder 328 sends
each unique pair of term elements 1002 in sequence or in
parallel.

In the process for managing knowledge, communicating
taxonomy for snippets 358 to taxonomy builder 328 from

10

15

20

25

30

40

45

50

55

60

65

6

taxonomy framework 356 includes sending a set of term
elements for taxonomy 1150 and a tag defining the relation-
ship they have for canonicalizing.

In the process for managing knowledge, requesting
amendments to taxonomy building scheme 362 by tax-
onomy framework 356 includes sending a signal to tax-
onomy amendment store 250 asking for amendments to the
schemes applicable to a particular object such as 506.

In the process for managing knowledge, communicating
amendments to taxonomy building scheme 362 to taxonomy
framework 356 from taxonomy amendment store 250
includes acquiring amendments to applicable schemes from
knowledge store 212 and sending the schemes correspond-
ing to each amendment to taxonomy framework 356.

In the process for managing knowledge, requesting to
build ecosystem 342 by ecosystem manager 334 includes
sending a document object and related phrases, terms, and
taxonomy to ecosystem generator 340. Ecosystem manager
334 processes each document object and related phrases,
terms, and taxonomy to send in sequence or in parallel.

In the process for managing knowledge, communicating
ecosystem 342 to ecosystem manager 334 from ecosystem
generator 340 includes sending a set of ecology elements
(1202, 1204, 1206, and the like) to ecosystem manager 334.

In the process for managing knowledge, requesting
scheme for building ecosystem 368 by ecosystem generator
340 includes sending a document object 506 and related
phrases, terms, and taxonomies to ecosystem framework
366.

In the process for managing knowledge, communicating
scheme for building ecosystem 368 to ecosystem generator
340 from ecosystem framework 366 includes sending ecol-
ogy elements to ecosystem generator 340.

In the process for managing knowledge, requesting
amendments to ecosystem building scheme 372 by ecosys-
tem framework 366 includes sending a signal to taxonomy
amendment store 250 asking for amendments for taxonomy
building scheme from knowledge store 212.

In the process for managing knowledge, communicating
amendments to ecosystem building scheme 372 to ecosys-
tem framework 366 from knowledge store 212 includes
acquiring ecosystem amendment store from 256 and sending
each amendment to ecosystem framework 366.

In the process for managing knowledge, requesting anno-
tation scheme 348 annotation framework to provide scheme
for annotation by annotation manager 270 includes sending
a document object 506 to annotation framework 346.

In the process for managing knowledge, communicating
annotation scheme 348 to annotation manager 270 from
annotation framework 346 includes sending annotation
scheme to annotation manager 270.

In the process for managing knowledge, requesting anno-
tation scheme 352 to knowledge store 212 by annotation
framework 346 includes sending a signal to knowledge store
212 asking for amendments for annotation scheme.

In the process for managing knowledge, communicating
annotation scheme 352 to annotation framework 346 from
knowledge store knowledge store 212 includes acquiring
amendments from annotation amendment store 252 and
sending them to annotation framework 346.

In the process for managing knowledge, requesting to
create terms 278 by annotation manager 270 includes send-
ing a set of phrase elements (e.g., 1002, 1004, and the like)
from each document to term generator 276.

In the process for managing knowledge, communicating
terms 278 to annotation manager 270 from term generator

US 10,872,122 B2

7

276 includes sending a set of term elements (e.g., 1102,
1104, and the like) to annotation manager 270.

In the process for managing knowledge, requesting term
generation scheme 284 by term generator 276 includes
sending a single phrase element to term framework 282.
Term generator 276 selects each phrase in sequence or in
parallel and sends it to term framework 282.

In the process for managing knowledge, communicating
term generation scheme 284 to term generator 276 from
term framework 282 at most one term element to term
generator 276. The term corresponds to the most recent
request.

In the process for managing knowledge, requesting
amendments to term generation scheme 288 by term frame-
work 282 includes sending a signal to knowledge store 212
asking for amendments from term amendment store 258.

In the process for managing knowledge, communicating
amendments to term generation scheme 288 to term frame-
work 282 from knowledge store 212 includes acquiring
amendments from term amendment store 258 and sending
each amendment to term framework 282.

In the process for managing knowledge, requesting to
generate phrases 302 by annotation manager 270 includes
sending each annotated snippet (702, 704) to phrase gen-
erator 300.

In the process for managing knowledge, communicating
phrases 302 to annotation manager 270 from phrase gen-
erator 300 includes sending a set of phrases 1000 to anno-
tation manager 270.

In the process for managing knowledge, requesting
canonicalized phrases 308 by phrase generator 300 includes
sending a phrase element to phrase canonicalizer 306 to
create canonicalized phrases 900. Phrase generator 300
sends each phrase from the annotated document object to
phrase canonicalizer 306 in sequence or in parallel.

In the process for managing knowledge, communicating
canonicalized phrases 308 to phrase generator 300 from
phrase canonicalizer 306 includes sending a canonicalized
phrase element (902, 904) to the phrase generator 300.

In the process for managing knowledge, requesting 314
by phrase canonicalizer 306 includes sending words 800 to
canonicalization framework 312.

In the process for managing knowledge, communicating
scheme for canonicalizing 314 to phrase canonicalizer 306
from canonicalization framework 312 includes sending a
canonicalized phrases (902, 904) to the phrase canonicalizer
306.

In the process for managing knowledge, requesting
amendments to canonicalization scheme 318 by canonical-
ization framework 312 includes sending a signal to knowl-
edge store 212 asking for amendments to canonicalizing
scheme from canonicalization amendment store 254.

In the process for managing knowledge, communicating
amendments to canonicalizing scheme 318 to canonicaliza-
tion framework 312 from knowledge store 212 includes
acquiring amendments from canonicalization amendment
store 254 and communicating them to canonicalization
framework 312.

It is contemplated that default knowledge system 210 can
include a personal computer or a shared computing resource
or a cloud computing to create an ecosystem 1200 for an
individual or a collection of documents 500 and can be a
document 502, or a collection of document 500, and ele-
ments shown in FIG. 5 through FIG. 12 and FIG. 37 that
creates a series of evolving modules as the basis of the
knowledge management system.

10

15

20

25

30

35

40

45

50

55

60

65

8

The process for managing knowledge can also include
modularizing a document 502 to a plurality of objects 504
that can be defined and customized to individual needs such
as of a discipline, federation, or an application. For a
scientific paper, these objects can be an abstract, introduc-
tion, experimental section etc.

The process for managing knowledge also can include
modularizing an object 506 further to individual sentences
such as 602

Further, the process for managing knowledge also can
include modularizing each sentence such as 602 into a
plurality of snippets such as 700 so that the knowledge held
in the knowledge warehouse 266 reveal the local semantics
of the words of a sentence.

Further, the process for managing knowledge also
includes modularizing a snippet such as 702 into individual
words such as 802.

Further, the process for managing knowledge also can
include canonicalizing the words 800 into canonicalized
words such as 900 so that effect of synonyms, short forms,
jargons, and the like are reduced in the knowledge ware-
house.

Further, the process for managing knowledge also
includes converting the canonicalized words 900 into
phrases such as 1000 so that linguistic artifacts of construct-
ing sentences using the same set of words in multiple ways
to mean the same semantics are reduced in the knowledge
held in the knowledge warehouse.

Further, the process for managing knowledge also
includes creating terms 1100 from two or more phrases so
that knowledge held in the knowledge warehouse 266 can
discriminate between many related semantics not clarified
by individual phrases.

Further, the process for managing knowledge also
includes constructing the taxonomy 1150 from terms such as
1100 so that the knowledge held in the knowledge ware-
house 266 reflects use-case specific preferences and hierar-
chies for clustering knowledge for search and discovery
purposes.

Further, the process for managing knowledge also
includes constructing an ecosystem 1200 where relation-
ships between the components of the knowledge concept
(500 to 1150) are marked in the warehouse so that the
components of a knowledge concept can evolve or interact
during or after their creations such as during a search and
discovery process.

The properties of default knowledge system 210 includes
an operating system capable of performing the instruction
received from the default knowledge system 210 and receiv-
ing input from the input device 220 and sending output to the
output device 224 and communicating with networked
devices such as network 216. In an embodiment, default
knowledge system 210 includes a computing resource such
as a cluster of computers, a cloud computing or a dedicated
computing resource such a personal computer, or a resource
configured to perform tasks for knowledge management
system 210. In an embodiment, the resource is a computer
such as an Apple laptop, Dell laptop and a Dell desktop
running an operating system such as Lynx Windows.

In knowledge management system, knowledge store 212
can include many processes such as taxonomy amendment
store 250, annotation amendment store 252, canonicaliza-
tion amendment store 254, ecosystem amendment store 256,
term amendment store 258, phrase amendment store 259 or
any other amendments for that may impact the linguistic
framework used by the knowledge system to create the
ecosystem 1200 for a plurality of documents. In an embodi-

US 10,872,122 B2

9

ment, the knowledge store 212 may be implemented as a
device which accepts computer-readable storage media, a
user input device which allows for the creation of new
amendments in a programming language, as a connection to
a network which contains amendments, or any other device
capable of communicating amendments (e.g., in the form of
computer code) to the default system to create an ecosystem
that is specific to use-case or a discipline or a particular
application, to provide amendments to the linguistic frame-
work used by the default knowledge system 228. The
linguistic framework used by the default knowledge system
228 can be a plurality of scheme used by the default
knowledge system 228 in carrying the steps outlined in this
document while creating the ecosystem 1200. Moreover,
these linguistic frameworks may be amended through a
plurality of processes managed by the knowledge store 212.
In an embodiment, knowledge store knowledge store 212
includes.

In knowledge management system 200 network 216 can
include many networks such as a local network connected to
a limited number of devices within a group of customers or
institutional network connecting the customers of an insti-
tution or a public network connected to publicly accessed
devices. In our implementation, we used both a local net-
work and an institutional network.

In knowledge management system 200 input device 220
can include many types input devices such as a static device
or an interactive device either connected locally or remotely
or as a web service. Each of these types of devices can be
a flat file system or a database.

In the knowledge management system 200 output device
224 can be a static flat system or a database or visual display
device or webservice.

In the knowledge management system 200, knowledge
system 228 is a process that upon activation creates the
ecosystem 1200 for a plurality of documents 500. This
process comes with all the features including but not limited
to the default scheme for creating ecosystem 1200. This
process can receive amendments to the default scheme for
creating ecosystem from a knowledge store 212. The knowl-
edge store 212 can be located locally or remotely and the
knowledge store 212 can be used by customers to fine-tune
the process of creating ecosystem 1200 to a specific appli-
cation or a discipline. Biological science and material sci-
ence are just two such examples of disciplines.

In the knowledge management system 200 knowledge
database 232 includes both a scheme database for annotation
and working database to create and manage intermediate
results that get communicated between processes during the
different steps of creating the ecosystem 1200. The scheme
database includes the default scheme used by processes that
create elements of shown in FIG. 4 to FIG. 12. The inter-
mediate results managed by the knowledge database 232
include but not limited to the information to be exchanged
between the processes that create elements shown in FIG. 4
to FIG. 12 and FIG. 37.

In the knowledge management system 200 operating
system 236 includes any vendor provided operating system
that comes with a computer and capable of providing the
basic operating capability of the process. We have tested the
knowledge system 228 both in Lynx and Window’s operat-
ing systems.

In the knowledge management system 200 taxonomy
amendment store 250 consists of a taxonomy amendment
process and a taxonomy amendment data store. The tax-
onomy amendment data store itself can be a flat file system
or a database. Taxonomy amendment process can be one or

10

15

20

25

30

35

40

45

50

55

60

65

10

more of software code or data processing stored procedure.
The taxonomy amendment data store itself can be a set
several amendment data stores specialized to a specific type
of discipline and or data object

In the knowledge management system 200 annotation
amendment store 252 consists of an annotation amendment
process and an annotation amendment data store. The anno-
tation amendment data store itself can be a flat file system or
a database. Annotation amendment process can be one or
more of software code or data processing stored procedure.
The annotation amendment data store itself can be a set
several amendment data stores specialized to a specific type
of discipline and or a data object.

In the knowledge management system 200 canonicaliza-
tion amendment store 254 consists of a canonicalization
amendment process and a canonicalization amendment data
store. The canonicalization amendment data store itself can
be a flat file system or a database. Canonicalization amend-
ment process can be one or more of software code or data
processing stored procedure. The canonicalization amend-
ment data store itself can be a set several amendment data
stores specialized to a specific type of discipline and or a
data object.

In the knowledge management system 200 ecosystem
amendment store 256 consists of an ecosystem amendment
process and an ecosystem amendment data store. The eco-
system amendment data store itself can be a flat file system
or a database. Ecosystem amendment process can be one or
more of software code or data processing stored procedure.
The ecosystem amendment data store itself can be a set
several amendment data stores specialized to a specific type
of discipline and or a data object.

In the knowledge management system 200 term amend-
ment store 258 consists of a term amendment process and a
term amendment data store. The term amendment data store
itself can be a flat file system or a database. Term amend-
ment process can be one or more of software code or data
processing stored procedure. The term amendment data
store itself can be a set several amendment data stores
specialized to a specific type of discipline and or a data
object.

In the knowledge management system 200 phrase amend-
ment store 259 consists of a phrase amendment process and
a phrase amendment data store. The phrase amendment data
store itself can be a flat file system or a database. Phrase
amendment process can be one or more of software code or
data processing stored procedure. The phrase amendment
data store itself can be a set several amendment data stores
specialized to a specific type of discipline and or a data
object.

In the knowledge system 228 canonicalization framework
312 consists of a default process for canonicalization that is
applicable to a plurality of disciplines and a corresponding
default canonicalization data store. Default process for
canonicalization process itself can be one or more of soft-
ware code and associated stored procedures. The default
canonicalization data store can be plurality of flat file system
or a database and associated stored procedures.

In the knowledge system 228 the term generation frame-
work 282 consists of a default process for term generation
that is applicable to a plurality of disciplines and a corre-
sponding default term generation data store. Default process
for term generation process itself can be one or more of
software code and associated stored procedures. The default
term generation data store can be plurality of flat file system
or a database and associated stored procedures.

US 10,872,122 B2

11

In the knowledge system 228 the annotation framework
346 consists of a default process for annotation that is
applicable to a plurality of disciplines and a corresponding
default annotation data store. Default process for annotation
itself can be one or more of software code and associated
stored procedures. The default annotation data store can be
plurality of flat file system or a database and associated
stored procedures.

In the knowledge system 228 the ecosystem generation
framework 366 consists of a default process for ecosystem
that is applicable to a plurality of disciplines and a corre-
sponding default ecosystem data store. Default process for
ecosystem itself can be one or more of software code and
associated stored procedures. The default ecosystem data
store can be plurality of flat file system or a database and
associated stored procedures.

In the knowledge system 228 the taxonomy framework
356 consists of a default process for taxonomy that is
applicable to a plurality of disciplines and a corresponding
default taxonomy data store. Default process for taxonomy
itself can be one or more of software code and associated
stored procedures. The default taxonomy data store can be
plurality of flat file system or a database and associated
stored procedures.

In the knowledge system 228 the term generator 276
consists of a default process for term generation that is
applicable to a plurality of disciplines and a corresponding
default term generation data store plus the information
provided by the term framework 282. Default process for
term generation itself can be one or more of software code
and associated stored procedures. The default term genera-
tion data store can be plurality of flat file system or a
database and associated stored procedures.

In the knowledge system 228 the phrase canonicalizer 306
consists of a default process for phrase canonicalization that
is applicable to a plurality of disciplines and a corresponding
default phrase canonicalization data store plus the informa-
tion provided by the phrase canonicalization framework
312. Default process for phrase canonicalization itself can be
one or more of software code and associated stored proce-
dures. The default phrase canonicalization data store can be
plurality of flat file system or a database and associated
stored procedures.

In the knowledge system 228 the ecosystem generator 340
consists of a default process for building ecosystem with
scheme that are applicable to a plurality of disciplines and a
corresponding ecosystem data store. Default process of
ecosystem generator itself can be one or more of software
codes and associated stored procedures. The default ecosys-
tem generator data store can be plurality of flat file system
or a database and associated stored procedures.

In the knowledge system 228 the taxonomy builder 328
consists of a default process for building taxonomy with
scheme that are applicable to a plurality of disciplines and a
corresponding taxonomy data store. Default process of tax-
onomy builder itself can be one or more of software codes
and associated stored procedures. The default taxonomy
builder data store can be plurality of flat file system or a
database and associated stored procedures.

In the knowledge system 228 the phrase generator 300
consists of a default process for generating phrase with
scheme that are applicable to a plurality of disciplines and a
corresponding phrase generation data store. Default process
of generating phrase itself can be one or more of software
codes and associated stored procedures. The phrase genera-
tion data store can be plurality of flat file system or a
database and associated stored procedures.

10

15

20

25

30

35

40

45

50

55

60

65

12

In the knowledge system 228 the ecosystem manager 334
consists of a default process for controlling and administer-
ing the scheme for creating ecosystem that are applicable to
a plurality of disciplines and a corresponding ecosystem
management data store. Default process of managing the
creation of ecosystem itself can be one or more of software
codes and associated stored procedures. The ecosystem
management datastore can be plurality of flat file system or
a database and associated stored procedures.

In the knowledge system 228 the annotation manager 270
consists of a default process for controlling and administer-
ing the scheme for annotation that are applicable to a
plurality of disciplines and a corresponding annotation man-
agement data store. Default process of managing annotating
itself can be one or more of software codes and associated
stored procedures. The annotation management datastore
can be plurality of flat file system or a database and
associated stored procedures.

In the knowledge system 228 the taxonomy manager 322
consists of a default process for controlling and administer-
ing the scheme for creating taxonomy that are applicable to
a plurality of disciplines and a corresponding taxonomy
management data store. Default process of managing the
creation of taxonomy itself can be one or more of software
codes and associated stored procedures. The taxonomy
management datastore can be plurality of flat file system or
a database and associated stored procedures.

In the knowledge system 228 the ecosystem manager 334
consists of a default process for controlling and administer-
ing the scheme for creating ecosystem that are applicable to
a plurality of disciplines and a corresponding ecosystem
management data store. Default process of managing the
creation of ecosystem itself can be one or more of software
codes and associated stored procedures. The ecosystem
management datastore can be plurality of flat file system or
a database and associated stored procedures.

In the knowledge system 228 the knowledge manager 260
consists of a default process for controlling and administer-
ing the scheme for creating knowledge that are applicable to
a plurality of disciplines and a corresponding knowledge
management data store. Default process of managing the
creation of knowledge itself can be one or more of software
codes and associated stored procedures. The knowledge
management data store can be plurality of flat file system or
a database and associated stored procedures.

In the knowledge system 228 the knowledge warehouse
consists of a default process for controlling and managing
the from documents from a plurality of disciplines and a
corresponding knowledge management data store. Default
process of managing and controlling knowledge can be one
or more of software codes and associated stored procedures.
The knowledge management datastore can be plurality of
flat file system or a database and associated stored proce-
dures

In the knowledge management system 200, the operating
system connection 234 manages request by the knowledge
system 228 to the operating system 236 to perform indi-
vidual steps of creating create the knowledge warehouse and
return results. Knowledge database connection 262 manages
request by the knowledge system 228 to the knowledge
database 232 to manage data during the process of creating
knowledge warehouse. Further, this request by the knowl-
edge system 228 can include both data retrieval and data
storage while performing one or more steps of creating the
knowledge warehouse.

The network connection 218 manages request by the
knowledge system 228 to one or more of the network

US 10,872,122 B2

13

connected devices while performing one or more of the steps
of creating knowledge warehouse. These network devices
can be a plurality of computers, databases, flat file systems
or computer processing units.

The input connection 222 manages request by the knowl-
edge system 228 to the input data used to perform individual
steps of creating the knowledge warehouse. Moreover, these
input data can come from interactive or static devices. These
input data devices can be a plurality of control parameters or
documents for the creation of knowledge warehouse. More-
over, the input data can come from a local data source or a
webservice.

The output connection 222 manages request by the
knowledge system 228 to the output data created by the
individual steps of creating the knowledge warehouse.
Moreover, these output data can go to interactive or static
devices. These output data devices can be a plurality of
intermediate results or final results of the creation of knowl-
edge warehouse. Moreover, the output data can go to a local
data source or a webservice.

The knowledge store connection 254 manages request by
the knowledge system 228 to the knowledge store 212 and
returns requested information. The knowledge store 212 can
be a local resource or a remotely located resource connected
by a network.

In the knowledge database connection 262 manages
requests by the knowledge manager 260 to the knowledge
database 232. The knowledge database 232 can be a local
database or a remote database or a webservice that manage
the documents for which the creation of knowledge ware
house being carried out.

The knowledge warehouse connection 268 manages the
requests by the knowledge manager 260 to the knowledge
warehouse 266 during the many steps of creating the knowl-
edge warchouse 266 for a given object such as 506.

The annotation manager connection 272 manages
requests by the knowledge manager 260 to the annotation
manager 270 during the steps of creating annotated terms
such as 1100 for an object such as 506.

The term generator connection 278 manages the request
by the annotation manager 270 to the term generator during
the steps of creating words such as 800 from an object such
as 506

The term framework connection 284 manages requests
from the term generator 276 to the term framework 282
during the creation of words such as 800 from an object such
as 506.

The term amendment connection 288 manages requests
from term framework to term amendment store 258 avail-
able as a subset of knowledge store 212.

The phrase generator connection 302 manages requests
from annotation manager 270 to phrase generator 300 during
the creation of phrases such as 1000 from an object such as
506.

The phrase canonicalizer connection 308 manages
requests from phrase generator 300 to phrase canonicalizer
306 during the creation of canonicalized roots such as 900
from words such as 800.

The phrase canonicalization framework connection 314
manages requests from phrase canonicalizer 306 to the
canonicalization framework 312 during the creation of
canonicalized roots such as 900 from the words such as 800.

The canonicalization amendment store connection 318
manages requests from canonicalization framework 312 to
the canonicalization amendment store 254 which is available
as a subset of knowledge store 212.

25

40

45

55

14

The annotation framework connection 348 manages
requests from the annotation manager 270 to annotation
framework 346 during the creation of objects such as 504,
sentences such as 600, snippets such as 700 from a docu-
ment such as 502.

The annotation amendment store connection 352 manages
requests from annotation framework 346 to the annotation
amendment store 252 which is available as a subset of
knowledge store 212.

The ecosystem manager connection 336 manages
requests from the knowledge manager 260 to the ecosystem
manager 334 during the creation of ecosystem such as 1200
for an object such as 506 of a document such as 502.

The ecosystem generator connection 342 manages
requests from ecosystem manager 334 to the ecosystem
generator 340, during the creation of an ecosystem such as
1200 for an object such as 506 of a document such as 502.

The ecosystem framework connection 368 manages
requests from ecosystem generator 340 to the ecosystem
framework 366 during the creation of an ecosystem such as
1200 for an object such as 506 of a document such as 502.

The ecosystem amendment store connection 372 manages
requests from the ecosystem framework 366 to the ecosys-
tem amendment store 256 during the creation of an ecosys-
tem such as 1200 for an object such as 506 of a document
such as 502.

The taxonomy manager connection 324 manages requests
from knowledge manager 260 to the taxonomy manager 322
during the creation of taxonomy such as 1150 from an object
such as 506 of a document 502.

The taxonomy builder connection 330 manages requests
from taxonomy manager 322 to taxonomy builder 328
during the creation of taxonomy such as 1150 from an object
such as 506 of a document 502.

The taxonomy framework connection 358 manages
requests from taxonomy builder 328 taxonomy framework
356 during the creation of taxonomy such as 1150 from an
object such as 506 of a document 502.

The taxonomy amendment store connection 362 manages
requests from taxonomy framework to taxonomy amend-
ment store 250 which is available as a subset of knowledge
store 212.

It should be appreciated that the process for managing
knowledge produces and uses several data types. Exemplary
data types are shown in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG.
9, FIG. 10, FIG. 11, FIG. 37 and FIG. 12. In this regard, a
document can include any structured, unstructured, or semi-
structured source of natural language text in digital format,
so the system is able to use many types of textual data and
can be useful even with inconsistent or messy data.

In this regard, a document object can include one or more
textual data components to represent different aspects of a
document and there can be fields describing a document’s
title, abstract, different sections, or others. In an embodi-
ment, the document object includes data stored in computer
memory or in a computer-readable medium.

In this regard, a sentence can include any unstructured
sample of natural language to represent a single natural
language sentence in text and can be a string of encoded
characters. In an embodiment, the sentence includes data
stored in computer memory or in a computer readable
medium.

In this regard, a snippet can include a part of a sentence
that represent a semantics or any sequence of canonicalized
roots combined according to a set of amendments to repre-

US 10,872,122 B2

15

sent a term or subpart of a term. In an embodiment, the
snippet includes data stored in computer memory or in a
computer-readable medium.

In this regard, a word can include any unstructured sample
of natural language to represent a single natural language
word, as defined by the annotation amendments 252. In an
embodiment, the word includes data stored in computer
memory or in a computer-readable medium.

In this regard, a canonicalized root can include a word of
natural language that adheres to a set of canonicalization
amendments 254. In an embodiment, the canonicalized root
includes data stored in computer memory or in a computer
readable medium.

In this regard, a phrase can include any unstructured
sample of natural language to represent a recursive linguistic
unit of syntax. A phrase is represented as a list of adjacent
words. In an embodiment, the phrase includes data stored in
computer memory or in a computer-readable medium.

In this regard, a term can include any snippet intended to
represent an important concept in a domain. A term can be
distinguished from a snippet only in its intended use. In an
embodiment, the term includes data stored in computer
memory or in a computer-readable medium.

In this regard, a taxonomy may include may include a
description or identification of a document or its part of such
as an object, sentence, snippet or concept using phrases or
terms. In an embodiment, the taxonomy includes data stored
in computer memory or in a computer-readable medium

In this regard, an ecosystem can include any relation
between document objects, phrases, and terms. An ecosys-
tem relates terms to the phrases and documents they are
found in, and relates terms to other terms to described
hyponyms and hypernyms in a taxonomy, and most impor-
tantly from an ecological point of view, the interrelations
and interactions represented by the terms in the taxonomy.
Terminologies, taxonomies, and concept ecologies represent
the contexts in which terms are used in such a way as to
manage their potential ambiguity and vagueness. In an
embodiment, the term includes data stored in computer
memory or in a computer-readable medium.

Knowledge management system and processes herein
have numerous advantageous and beneficial properties over
conventional combinatorial methods of knowledge genera-
tion. Advantageously and unexpectedly knowledge manage-
ment system 200 has a time complexity up to n**m (“n to
the power m”), wherein n is an integer for a total number of
distinct words in a knowledge management system, and m
is an integer for a number of words per phrase generated.
With regards to FIG. 22, m can be from 1 to 15. Moreover,
in an exemplary document such as an abstract of a scientific
research article, n can be a couple of hundreds. Moreover,
knowledge management system provides integration of both
machine learning techniques such as topic modeling with
formal distributional and compositional computational lin-
guistic models. On a single document, this system runs from
0O(n2) to O(nS) time, depending on the amendments present
in the system, were n is the number of words in the
document, as provided in amendments. When run on mul-
tiple documents, the system runs in O(m) time, where m is
the number of documents. The use of formal distributional
and compositional linguistic models together with machine
learning techniques results in a system that can be adapted
with amendments and updated to account for new knowl-
edge or data.

10

15

20

25

30

35

40

45

50

55

60

65

16

The articles and processes herein are illustrated further by
the following Example, which is non-limiting.

Example

Automatically and adaptably building indexes and knowl-
edge representations from very large technical document
collections.

A process for managing knowledge can be root and
rule-based to automatically derive building blocks of infor-
mation systems. The building blocks can be used in the
derivation of indexes that support query elaboration in
search and taxonomies/concept ecologies that support elabo-
ration of research areas, technologies and industrial
advancement. The process provides a unified manner for
transforming linguistic output into meaningful structures of
related terms that are organized from simple to complex or
from general to specific and are useful for query elaboration,
keyword selection and taxonomy and concept ecology build-
ing. The process also can incorporate different linguistic
techniques and can be applied to different domain contexts.

The process derives building blocks for information sys-
tems in different domains and contexts and provides, e.g.,
indexing large document collections in technical domains by
grouping related terms from simple to complex; selecting
keywords for individual documents according to whether
they are root and rule-based terms that add specificity or
generality to a document collection index or exhibit a
relatively higher frequency of occurrence in the individual
document as compared to other documents in the collection.
The process can produce explicit taxonomies and concept
ecologies from a document collection index that can support
detection, tracking, and combining ideas from scientific and
technical domains as well as economic markets into novel
concepts as a basis for new scientific research or the creation
of new technologies.

In indexing, derived terms are normalized and automati-
cally grouped into synonymous phrases with different syntax
and explicit hierarchies of general to more and more specific
topics. These provide the basis for automatically suggesting
query terms for search, selecting keywords for individual
documents and automating the construction and updating
explicit taxonomies. Frequency may not be a sole property
of a term that makes it a candidate for search, keyword
selection, or taxonomic insertion. Accordingly, relatively
rare terms can be included for search and contribute to
knowledge organization, e.g., in detection of novel concepts.

The process includes extraction of phrases based on the
syntactic annotation of text contained in a document collec-
tion. Construction of terms can be based on the phrases. The
process can be used in a default system that can be modified
and extended. The default system produces a phrase output
for which a generation of terms, indexes, keywords, taxo-
nomic and ecological entries depends. After a document
collection is provided, the process extracts a first phrase of
the first document.

If the first phrase is a simple phrase (i.e., a phrase that
does not include a preposition or syntactic connective), the
process adds the phrase to a collection of extracted phrases.
Here, the phrase is not broken down any further even if it
contains two or more words that could stand alone as single
word phrases. This can exclude articles that include “a,”
“the,” and the like.

If the first phrase is a complex phrase (i.e., a phrase that
includes a preposition or syntactic connective), the process
extracts complex phrases contained in the original complex
phrase and simple phrases within the complex phrases.

US 10,872,122 B2

17

It should be appreciated that a single word terms can be
generated. Some single words terms can be made but not
single word terms from multi-word phrases. Parsing simple
multi-word phrases can produce single word terms that may
not aid elaborating search queries or that should not be
included at a higher level of a taxonomic term hierarchy. It
is contemplated that, e.g., in a cyber security domain,
limiting parsing in this manner can prevent a simple multi-
word phrase such as “cross-site scripting” from being further
processed into single word terms such as “cross,” “site,” or
“scripting.”

The default system determines whether incorporating
computational linguistic techniques is useful for construct-
ing the building blocks of information systems. If such
techniques do not add value to generating more useful
building blocks than what is achieved by the default system,
they are not incorporated.

With reference to FIG. 13, A is a data type for bare phrase
structure annotations, which are represented as algebraic
data types shown in FIG. 13. Each leaf contains a token, a
string representing a single lexical item. Other nodes contain
a left subtree and a right subtree. The head field indicates
whether the left subtree or right subtree contains the syn-
tactic head of the phrase. Flements in A may also contain
features, which can be used to represent additional infor-
mation about linguistic structures, including syntactic cat-
egory (e.g., part of speech), dependency type, and the like.

With reference to FIG. 14, D is a data type used for
documents, which are represented as records as shown in
FIG. 14. When the value of the annotation field is unknown
or unimportant, we sometimes do not explicitly represent the
value of this field.

With reference to FIG. 15, T is the data type used for root-
and rule-based terms and their metadata, which are repre-
sented as records as shown in FIG. 15. Again, when the
annotations or document values are unknown or unimport-
ant, we sometimes do not explicitly represent them.

It is contemplated that X is an arbitrary type used for
taxonomic representations of root- and rule based terms.
Taxonomic representations can be any type; in some cases,
they may be identical to the term type T. There is one
requirement for the type X: that it be possible to recover the
term object corresponding to a particular element of type X.
This is generally assumed to be in the term field.

With reference to FIG. 16, an input to the process includes
a corpus of natural language documents. This corpus is a
collection of document records that contains natural lan-
guage content that can be represented as a string and a field
for annotations. The annotation field is initially empty, and
is filled in step 2. The process includes a general framework
that supports various linguistic and text processing models
as exchangeable modules.

The result of the process includes a set of terms and
relations between them as well as metadata indexing the
terms to documents in the corpus. The results and specified
parameters can be a domain-specific ecology, wherein each
domain’s ecology can evolve independently and follow
same standards.

The process iterates over every document d in the corpus
(step 1). Each document is annotated (step 2). This fills the
annotation field of d, ANNOTATION. A set of phrases P' is
extracted from the annotated document d (step 3). Terms in
T' are associated with the current document, d, filling the
document field of each term (step 4). This association could
be used, for example, to index documents by term or to
identify the concepts discussed in a document. The process
updates the values of P and T with P' and T' (step 5). A

10

15

20

25

30

35

40

45

50

55

60

65

18

taxonomy is generated from the terms in T (step 6). The
process terminates, returning the terms in T, phrases in P,
relations in R, and the modified corpus C (step 7). Pseudo-
code for these steps is shown in FIG. 17.

If the process is processing a single document containing
the following text, then the input C would be a singleton list
containing a document structure with the given text as its
content field.

An experimental study of a wing in a propeller slipstream
was made in order to determine the span wise distribution of
the lift increase due to slipstream at different angles of attack
of'the wing and at different free stream to slipstream velocity
ratios. The results were intended in part as an evaluation
basis for different theoretical treatments of this problem.

The document object is shown in FIG. 18. Results of the
process can depend on various additional parameters.

It is contemplated that the process selects the only docu-
ment from the corpus. This is assigned to the variable d. The
document is annotated. This can produce a list of annota-
tions, and each of which represents a syntactic structure of
a sentence. FIG. 19 and FIG. 20 are show exemplary phrase
structures tress from sentences in the small corpus provided
above. A set of phrases P' is extracted from the annotated
document d. It is contemplated that the process can extract
the phrases shown in FIG. 21 from annotations shown in
FIG. 19. In FIG. 21, phrases are strings, but each phrase can
be paired with a subtree that produced it. Each phrase is
shown in brackets. Non-default implementations may find
different sets of phrases. Adjusting the set of extracted
phrases can be performed by the process.

In the process, phrases in P' are converted to a set of terms
T'. The default implementation produces terms shown in
FIG. 22 from the phrases given above. Here, the process has
used delimiters such as “:0:”, “:1:”, “:2:”, etc. to indicate
syntactic precedence. The original bare phrase structure tree
can be recovered by combining elements in order of prece-
dence, starting with 0. The same term may be generated
multiple times, but because T is a set, these repetitions are
not represented. For some applications, it may be useful to
track frequency of each term in the document.

In the process terms in T' are associated with the current
document, d, filling the document field of each term. This
association could be used, e.g., to index documents by term
or to identify the concepts discussed in a document. The
process updates P and T with P' and T'. A taxonomy is
generated using the terms in T'. The default implementation
produces taxonomic relations shown in FIG. 23 from the
phrases given above. Related terms are grouped together
with the frequency of each term given in parentheses. Terms
are sorted from general to specific, but this provides infor-
mation that could be used to sort taxonomies in different
ways depending on user needs.

The process terminates, returning the terms in T, phrases
in P, relations in R, and the modified corpus C.

The process selects a document, referred to as d, from the
set of documents in the corpus that have not been processed.
The structure of each document d is shown in FIG. 14. In
pseudocode, this corresponds to line 2 of the Main proce-
dure.

With reference to FIG. 24, the input to the document
annotation subroutine is a single document, d, as well as two
external components: a domain-dependent preprocessing
function, f, and a model, m, f may be any function which
takes and returns a document. As an example, f may take a
document and remove all non-linguistic content (e.g.,
HTML markup or mathematical expressions). The model,
in, is a function which takes a document and returns an

US 10,872,122 B2

19

annotation. The structure of an annotation is shown in FIG.
13. This structure represents a bare phrase structure tree
similar to those used in some formulations of minimalist
grammars.

In the process, the document d is updated with the result
of applying fto d, and an annotation a is created by applying
m to d, wherein the value of the annotation field for d is set
to a. FIG. 25 shows pseudocode for these steps.

The function m can be a language model provided by a
natural language processing toolkit such as Stanford
CoreNLP or SpaCy. Though these models produce depen-
dency trees, dependencies can generally be converted into
bare phrase structure trees regularly.

With reference to FIG. 26, the input to the phrase extrac-
tion subroutine is a single document, d, which has by now
been updated with the results of the preprocessor f and the
model m. The subroutine is also given a set of scheme E,
each of which is a function that takes an annotation and
returns a Boolean. Here, the subroutine iterates over every
sentence described by d:annotation. The current sentence is
henceforth referred to as s. Note that s follows the structure
shown in FIG. 13. A set of subtrees N of a are obtained. Only
subtrees which consist of more than one word or which have
a sister node that consists of more than one word are
included. The subroutine iterates over every subtree in N for
the current sentence s. The current subtree is henceforth
referred to as n. For each n, the subroutine asks whether
e(n)=1 for any rule e in E. If yes, n will be output as part of
a collection of phrases P'. Otherwise, n is not returned and
the subroutine continues to the next value for n. FIG. 27
shows pseudocode for these steps. Here, Subtrees(a) is a
function which returns the list of acceptable subtrees of an
annotation object a. In the default system, this includes only
subtrees that includes more than one word or that have a
sister including more than one node. This process is shown
in pseudocode in FIG. 28. The set of scheme E might contain
the following rule, written as a pseudocode function. This
refers to the features of nodes in the tree. This identifies noun
phrases, which are good candidates for technical terms in
many domains. FIG. 29 shows pseudocode for an extraction
rule that produces the phrases given above when applied to
the example annotation.

With regard to FIG. 30, the input to the terminology
generation subroutine is a set of phrases, P'. This subroutine
relies on another subroutine, namely a terminology conver-
sion subroutine. Here, an empty set T' of terms is created.
The subroutine iterates over every phrase in P'. The current
phrase is henceforth referred to as p. Once every phrase has
been processed, the subroutine returns the set of all terms t
that have been selected. Phrase p is converted into a term t.
If t is the empty string, then it is ignored and the subroutine
moves on to the next phrase in P'. Otherwise, t is added to
T'. Pseudocode for these steps is shown in FIG. 31. The
terminology generation subroutine can iterate over the
phrases given above, and call Convert on each of them.

With reference to FIG. 32, the input to the terminology
conversion subroutine is a single phrase, p. The subroutine
is also given a conversion function q which maps strings to
strings, and a combination function ¢ which maps triples
containing two terms and an annotation. As examples, the
conversion function may be a lemmatizer, stemmer, or stop
word filter. The combination function ¢ combines two terms
into a single term, using whatever information from ¢ may
be useful. In the default system, ¢ combines the terms using
the height of the bare phrase structure tree of the given
annotation, excluding stop words. If the height is 0, then the
two input terms are connected by the delimiter “:0:”. If the

10

15

20

25

30

35

40

45

50

55

60

65

20

height is 1, then the two input terms are connected by the
delimiter “:1:” and so on. The head of the term always
follows the dependent. The function ¢ combines two terms
using the next delimiter that does not occur in either of the
two sub-terms. Here, if p is a leaf, return q(p). If p head is
left, then p:left is assigned to the variable current_head and
p:right is assigned to the variable current_dependent. Oth-
erwise, p:right is assigned to the variable current_head and
p:left is assigned to the variable current_dependent. More-
over, convert current_head and current_dependent by recur-
sively calling this subroutine. Store the results in the vari-
ables converted_head and converted_dependent. Thereafter,
return c(converted_head; converted_dependent; p). FIG. 33
shows pseudocode for these steps.

With regard to the phrase represented by the bare phrase
structure tree annotation shown in FIG. 34, the phrase is
assigned to the variable p and passed to the conversion
subroutine. In this case, p.head is right. As such,
current_head will be set to the phrase “angles of attack of the
wing” and current_dependent will be set to “different”. Each
of these daughters will be converted to a term. The phrase
“different” is a leaf node, and so q(“different”) is returned as
the term for this phrase. In the default system, the text will
remain unchanged, as “different” is already a lemma. The
phrase “angles of attack of the wing” is not a leaf node, so
its daughters are converted. In this case, the daughters are
“angles of attack™ and “of the wing”. These must be con-
verted as well. The phrase “angles of attack” is not a leaf
node. Its daughters are “angles” and “of attack™. The daugh-
ter “angles” is a leaf node, and so it is converted to
q(“angles”) which results in the term “angle”, because
“angle” is the lemma of “angles”. The phrase “of attack” is
a branching node, with daughters “of” and “attack”. The
phrase “of” is a stop word, and so the term returned is the
empty string and ignored. This yields “attack”, which is to
be combined with “angle”. Because “angle” is the head of
the phrase, the resulting term is c¢(“angle”, “attack”, “angle
of attack™). In the default system, these terms are combined
using the highest priority (lowest value) delimiter that does
not appear in either term. In this case, it is “:0:”, so the
resulting term is “attack:0:angle”. Thus, the phrase “of the
wing” produces the term “wing”, as both “of” and “wing”
are stop words. The terms “wing” and “attack:0:angle” are
then combine using ¢, again using the next-lowest delimiter,
in this case producing “wing:1:attack:0:angle”. Finally,
“wing: 1:attack:0:angle” and “different” are combined using
¢, producing “different:2:wing:1:attack:0:angle”.

Association of all terms t in T' with document d is done
by setting the value of t:document to a pointer to d. In
pseudocode, this corresponds to lines 6 and 7 of the Main
procedure. Though association can correspond to indexing
in information-retrieval contexts. Since each term is indexed
to the documents in which it is found, it is possible to search
for documents by term or perform other information
retrieval or information processing tasks. It is also possible
to derive the set of terms that are found in a selected
document, which is useful for other tasks such as topic
modeling.

With regard to taxonomy generation and with reference to
FIG. 35, the input to the taxonomy generation subroutine is
a list of terms, T. The subroutine is also given a function c,
which maps terms to some alternate taxonomic representa-
tion of type X as well as a function r which returns the
relation that two alternate representations have. In the
default system, the function c is simply the identity function;
no changes are made to the terms in T in preparation for the
taxonomy. In other cases, it may be useful to add or remove

US 10,872,122 B2

21

information from the terms, e.g., flattening the structures
represented or inferring additional information.

The membership function r in the default system consid-
ers only one possible relationship type, which is left anony-
mous (i.e., the exact meaning of these relationships is not
specified). These relations are identified in a simplistic way:
if one term string-contains another, then the two are treated
as related. This is simplistic; modifications can be made to
capture notions such as hyponymy or hypernymy. Here, an
empty set R is initialized. Every term tin T is converted into
a taxonomic representation via c(t), creating a set X of
elements of type X. An unprocessed pair of elements (a; b)
in X is selected. If r(a; b) succeeds, add (a:term; b:term; r(a;
b)) to R. R is sorted by the frequency of the component terms
of each triple. It may be beneficial in downstream applica-
tions to include the most frequent relations or to exclude
extremely frequent or infrequent relations. Thereafter, return
R. FIG. 36 shows pseudocode for taxonomy generation.

The taxonomy generation process can also be used to
renormalize terms in the ecology. Pairs of terms which are
known to be related or which are identifiably related by one
r but not by another can be renormalized by modifying the
terms themselves, possibly based on other data such as parse
trees.

The system terminates when the steps have been com-
pleted for every, a select set, or a select number of docu-
ments in the corpus. The returned values are the set of terms
T, and the set of taxonomic relations R.

Embodiments of the subject matter and the operations
described in this specification can be implemented in digital
electronic circuitry, in tangibly-embodied computer soft-
ware or firmware, in computer hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this speci-
fication can be implemented as one or more computer
programs, i.e., one or more modules of computer program
instructions, encoded on a computer storage medium for
execution by, or to control the operation of, data processing
apparatus. Alternatively, or in addition, the program instruc-
tions can be encoded on an artificially-generated propagated
signal, e.g., a machine-generated electrical, optical, or elec-
tromagnetic signal, that is generated to encode information
for transmission to suitable receiver apparatus for execution
by a data processing apparatus. A computer storage medium
can be, or be included in, a computer-readable storage
device, a computer-readable storage substrate, a random or
serial access memory array or device, or a combination of
one or more of them. Moreover, while a computer storage
medium is not a propagated signal, a computer storage
medium can be a source or destination of computer program
instructions encoded in an artificially-generated propagated
signal. The computer storage medium can also be, or be
included in, one or more separate physical components or
media (e.g., multiple CDs, disks, or other storage devices).

The operations described in this specification can be
implemented as operations performed by a data processing
apparatus on data stored on one or more computer-readable
storage devices or received from other sources.

The term “data processing apparatus”™ encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application-specific
integrated circuit). The apparatus can also include, in addi-

20

25

40

45

22

tion to hardware, code that creates an execution environment
for the computer program in question, e.g., code that con-
stitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them. The apparatus and execution environ-
ment can realize various different computing model infra-
structures, such as web services, distributed computing and
grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or
interpreted languages, declarative or procedural languages,
and it can be deployed in any form, including as a stand-
alone program or as a module, component, subroutine,
object, or other unit suitable for use in a computing envi-
ronment. A computer program may, but need not, correspond
to a file in a file system. A program can be stored in a portion
of a file that holds other programs or data (e.g., one or more
scripts stored in a markup language document), in a single
file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
sub-programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net-
work.

The processes and logic flows described in this specifi-
cation can be performed by one or more computers execut-
ing one or more computer programs to perform actions by
operating on input data and generating output. The processes
and logic flows can also be performed by, and apparatus can
also be implemented as, special purpose logic circuitry, e.g.,
an FPGA (field programmable gate array) or an ASIC
(application-specific integrated circuit).

Computers suitable for the execution of a computer
program include, by way of example, can be based on
general or special purpose microprocessors or both, work-
stations, or any other kind of central processing unit. Gen-
erally, a central processing unit will receive instructions and
data from a read-only memory or a random access memory
or both. The essential elements of a computer are a central
processing unit for performing or executing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic; magneto-optical disks, optical disks, USB drives,
and so on. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA),
a microwave oven, mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device (e.g., a universal serial bus (USB)
flash drive), to name just a few. Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks. The
central processing unit and the memory can be supple-
mented by, or incorporated in, special purpose logic cir-
cuitry.

To provide for interaction with a user, embodiments of the
subject matter described in this specification can be imple-
mented on a computer having a display device, e.g., a CRT

US 10,872,122 B2

23

(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user’s client device in response
to requests received from the web browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back-end, middleware, or
front-end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), an inter-
network (e.g., the Internet), and peer-to-peer networks (e.g.,
ad hoc peer-to-peer networks). Such interconnects may
involve electrical cabling, fiber optics, or be wireless con-
nections.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data (e.g., an HTML page) to a
client device (e.g., for purposes of displaying data to and
receiving user input from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of the invention or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of the invention. Certain features
that are described in this specification in the context of
separate embodiments can also be implemented in combi-
nation in a single embodiment. Conversely, various features
that are described in the context of a single embodiment can
also be implemented in multiple embodiments separately or
in any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations
and even initially claimed as such, one or more features from
a claimed combination can in some cases be excised from
the combination, and the claimed combination may be
directed to a subcombination or variation of a subcombina-
tion.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be

10

15

20

25

30

35

40

45

50

55

60

65

24

advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software product or packaged into
multiple software products.

Thus, particular embodiments of the invention have been
described. Other embodiments are within the scope of the
following claims. In some cases, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. In addition, the processes depicted in the
accompanying figures do not necessarily require the par-
ticular order shown, or sequential order, to achieve desirable
results. In certain implementations, multitasking and parallel
processing may be advantageous.

While one or more embodiments have been shown and
described, modifications and substitutions may be made
thereto without departing from the spirit and scope of the
invention. Accordingly, it is to be understood that the present
invention has been described by way of illustrations and not
limitation. Embodiments herein can be used independently
or can be combined.

Reference throughout this specification to “one embodi-
ment,” “particular embodiment,” “certain embodiment,” “an
embodiment,” or the like means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus,
appearances of these phrases (e.g., “in one embodiment” or
“in an embodiment”) throughout this specification are not
necessarily all referring to the same embodiment, but may.
Furthermore, particular features, structures, or characteris-
tics may be combined in any suitable manner, as would be
apparent to one of ordinary skill in the art from this
disclosure, in one or more embodiments.

All ranges disclosed herein are inclusive of the endpoints,
and the endpoints are independently combinable with each
other. The ranges are continuous and thus contain every
value and subset thereof in the range. Unless otherwise
stated or contextually inapplicable, all percentages, when
expressing a quantity, are weight percentages. The
suffix “(s)” as used herein is intended to include both the
singular and the plural of the term that it modifies, thereby
including at least one of that term (e.g., the colorant(s)
includes at least one colorants). “Optional” or “optionally”
means that the subsequently described event or circumstance
can or cannot occur, and that the description includes
instances where the event occurs and instances where it does
not. As used herein, “combination” is inclusive of blends,
mixtures, alloys, reaction products, and the like.

As used herein, “a combination thereof” refers to a
combination comprising at least one of the named constitu-
ents, components, compounds, or elements, optionally
together with one or more of the same class of constituents,
components, compounds, or elements.

All references are incorporated herein by reference.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the invention (espe-
cially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. “Or” means “and/or.” Further, the conjunction “or” is
used to link objects of a list or alternatives and is not
disjunctive; rather the elements can be used separately or
can be combined together under appropriate circumstances.
It should further be noted that the terms “first,” “second,”
“primary,” “secondary,” and the like herein do not denote

29 <

US 10,872,122 B2

25

any order, quantity, or importance, but rather are used to
distinguish one element from another. The modifier “about”
used in connection with a quantity is inclusive of the stated
value and has the meaning dictated by the context (e.g., it
includes the degree of error associated with measurement of
the particular quantity).

What is claimed is:
1. A process for managing knowledge, the process com-
prising:

requesting a document by a knowledge manager;

communicating the documents to the knowledge manager
from a knowledge database;

requesting a taxonomy by the knowledge manager;

communicating the taxonomy to the knowledge manager
from a taxonomy manager;

requesting an ecosystem by the knowledge manager;

communicating the ecosystem to the knowledge manager
from an ecosystem manager;

requesting an annotation by the knowledge manager;

communicating the annotation to the knowledge manager
from an annotation manager with the annotation com-
prising an algebraic data type for a phrase such that the
algebraic data type comprises a leaf that contains a
string representing a lexical item; a left subtree; a right
subtree; a head field that indicates whether the left
subtree or right subtree contains a syntactic head of the
phrase, and elements in the algebraic date type contain
features that represent linguistic structure including
syntactic category, dependency type, or a combination
comprising at least one of the foregoing features; and

communicating a knowledge management data to a
knowledge warehouse from the knowledge manager to
manage knowledge,

wherein the knowledge management data comprises the
documents, the taxonomy, the ecosystem, and the anno-
tation.

2. The process of claim 1, further comprising:

requesting a taxonomy creation by the taxonomy man-
ager;

communicating the taxonomy creation to the taxonomy
manager from a taxonomy builder;

requesting a taxonomy scheme by the taxonomy builder;

communicating the taxonomy scheme to the taxonomy
builder from a taxonomy framework;

requesting a taxonomy amendment by the taxonomy
framework; and

communicating the taxonomy amendment to the tax-
onomy framework from a knowledge store.

3. The process of claim 1, further comprising:

requesting an ecosystem snippet by the ecosystem man-
ager;

communicating the ecosystem snippet to the ecosystem
manager from an ecosystem generator;

requesting an ecosystem scheme by the ecosystem gen-
erator;

communicating the ecosystem scheme to the ecosystem
generator from an ecosystem framework;

requesting an ecosystem amendment by the ecosystem
framework; and

communicating the ecosystem amendment to the ecosys-
tem framework from a knowledge store.

4. The process of claim 1, further comprising:

requesting an annotation scheme by the annotation man-
ager;

communicating the annotation scheme to the annotation
manager from an annotation framework;

10

15

20

25

30

35

40

45

50

55

60

65

26

requesting an annotation amendment by the annotation
framework; and

communicating the annotation amendment to the annota-
tion framework from a knowledge store.

5. The process of claim 1, further comprising:

requesting a term snippet by the annotation manager;

communicating the term snippet to the annotation man-
ager from a term generator;

requesting a term scheme by the term generator;

communicating the term scheme to the term generator
from a term framework;

requesting a term amendment by the teen framework; and

communicating the term amendment to the term frame-
work from a knowledge store.

6. The process of claim 1, further comprising:

requesting a phrase snippet by the annotation manager;

communicating the phrase snippet to the annotation man-
ager from a phrase generator;

requesting a phrase generation scheme by the phrase
generator,

communicating the phrase generation scheme to the
phrase generator from a phrase generation framework;

requesting a phrase generation amendment by the phrase
generation framework;

communicating the phrase generation amendment to the
phrase generation framework from a knowledge store;

requesting a canonicalized phrase by the phrase generator;

communicating the canonicalized phrase to the phrase
generator from a phrase canonicalizer;

requesting a phrase canonicalizing scheme by the phrase
canonicalizer;

communicating the phrase canonicalizing scheme to the
phrase canonicalizer from a canonicalization frame-
work;

requesting a canonicalization amendment by the canoni-
calization framework; and

communicating the canonicalization amendment to the
canonicalization framework from a knowledge store.

7. A computer-implemented method, comprising:

requesting a document by a knowledge manager;

communicating the documents to the knowledge manager
from a knowledge database;

requesting a taxonomy by the knowledge manager;

communicating the taxonomy to the knowledge manager
from a taxonomy manager;

requesting an ecosystem by the knowledge manager;

communicating the ecosystem to the knowledge manager
from an ecosystem manager;

requesting an annotation by the knowledge manager;

communicating the annotation to the knowledge manager
from an annotation manager with the annotation com-
prising an algebraic data type for a phrase such that the
algebraic data type comprises a leaf that contains a
string representing a lexical item: a left subtree; a right
subtree; a head field that indicates whether the left
subtree or right subtree contains a syntactic head of the
phrase, and elements in the algebraic date type contain
features that represent linguistic structure including
syntactic category, dependency type, or a combination
comprising at least one of the foregoing features; and

communicating a knowledge management data to a
knowledge warehouse from the knowledge manager to
manage knowledge,

wherein the knowledge management data comprises the
documents, the taxonomy, the ecosystem, and the anno-
tation.

US 10,872,122 B2

27

8. The computer-implemented method of claim 7, further
comprising:

requesting a taxonomy creation by the taxonomy man-
ager;

communicating the taxonomy creation to the taxonomy
manager from a taxonomy builder;

requesting a taxonomy scheme by the taxonomy builder;

communicating the taxonomy scheme to the taxonomy
builder from a taxonomy framework;

requesting a taxonomy amendment by the taxonomy
framework; and

communicating the taxonomy amendment to the tax-
onomy framework from a knowledge store.

9. The computer-implemented method of claim 8, further

comprising:

requesting an annotation scheme by the annotation man-
ager;

communicating the annotation scheme to the annotation
manager from an annotation framework;

requesting an annotation amendment by the annotation
framework; and

communicating the annotation amendment to the annota-
tion framework from a knowledge store.

10. A system comprising:

one or more computers configured to perform operations,
the operations comprising:

requesting a document by a knowledge manager;

communicating the documents to the knowledge manager
from a knowledge database;

requesting a taxonomy by the knowledge manager;

communicating the taxonomy to the knowledge manager
from a taxonomy manager;

requesting an ecosystem by the knowledge manager;

communicating the ecosystem to the knowledge manager
from an ecosystem manager;

requesting an annotation by the knowledge manager;

communicating the annotation to the knowledge manager
from an annotation manager with the annotation com-
prising an algebraic data type for a phrase such that the
algebraic data type comprises a leaf that contains a
string representing a lexical item: a left subtree; a right
subtree; a head field that indicates whether the left
subtree or right subtree contains a syntactic head of the
phrase, and elements in the algebraic date type contain
features that represent linguistic structure including
syntactic category, dependency type, or a combination
comprising at least one of the foregoing features; and

communicating a knowledge management data to a
knowledge warehouse from the knowledge manager to
manage knowledge,

wherein the knowledge management data comprises the
documents, the taxonomy, the ecosystem, and the anno-
tation.

11. The system of claim 10, further comprising:

requesting a taxonomy creation by the taxonomy man-
ager;

communicating the taxonomy creation to the taxonomy
manager from a taxonomy builder;

requesting a taxonomy scheme by the taxonomy builder;

communicating the taxonomy scheme to the taxonomy
builder from a taxonomy framework;

requesting a taxonomy amendment by the taxonomy
framework; and

communicating the taxonomy amendment to the tax-
onomy framework from a knowledge store.

28

12. The system of claim 11, further comprising:
requesting an annotation scheme by the annotation man-
ager;
communicating the annotation scheme to the annotation
5 manager from an annotation framework;

requesting an annotation amendment by the annotation

framework; and

communicating the annotation amendment to the annota-

tion framework from a knowledge store.

13. A non-transitory computer-readable medium having
instructions stored thereon, which, when executed by a
processor, cause the processor to perform operations com-
prising:

requesting a document by a knowledge manager;

communicating the documents to the knowledge manager

from a knowledge database;

requesting a taxonomy by the knowledge manager;

communicating the taxonomy to the knowledge manager

from a taxonomy manager;

requesting an ecosystem by the knowledge manager;

communicating the ecosystem to the knowledge manager

from an ecosystem manager;

requesting an annotation by the knowledge manager;

communicating the annotation to the knowledge manager

from an annotation manager with the annotation com-
prising an algebraic data type for a phrase such that the
algebraic data type comprises a leaf that contains a
string representing a lexical item; a left subtree; a right
subtree; a head field that indicates whether the left
subtree or right subtree contains a syntactic head of the
phrase, and elements in the algebraic date type contain
features that represent linguistic structure including
syntactic category, dependency type, or a combination
comprising at least one of the foregoing features; and
communicating a knowledge management data to a
knowledge warehouse from the knowledge manager to
manage knowledge,

wherein the knowledge management data comprises the

documents, the taxonomy, the ecosystem, and the anno-
tation.

14. The non-transitory computer-readable medium of
claim 13 in which the operations further comprise:

requesting a taxonomy creation by the taxonomy man-

ager;

communicating the taxonomy creation to the taxonomy

manager from a taxonomy builder;

requesting a taxonomy scheme by the taxonomy builder;

communicating the taxonomy scheme to the taxonomy

builder from a taxonomy framework;

requesting a taxonomy amendment by the taxonomy

framework; and

communicating the taxonomy amendment to the tax-

onomy framework from a knowledge store.

15. The non-transitory computer-readable medium of
claim 14 in which the operations further comprise:

requesting an annotation scheme by the annotation man-

ager;

communicating the annotation scheme to the annotation

manager from an annotation framework;

requesting an annotation amendment by the annotation

framework; and

communicating the annotation amendment to the annota-

tion framework from a knowledge store.

10

15

20

25

30

35

40

45

50

55

60

#* #* #* #* #*

